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W A V E S  O N  A V I S C O U S - F L U I D  F I L M  F L O W I N G  D O W N  

A V I B R A T I N G  V E R T I C A L  P L A T E  

S. N.  Samatov  and O. Yu. Tsve lodub UDC 532.51 

A thin film of a viscous fluid flowing down a vertical plane in a gravitational field is considered. 
The plane executes harmonic oscillations in the direction normal to itself. An equation that 
describes the evolution of surface disturbances at small fluid flow rates is obtained. Some 
solutions of this equation are found. 

1. Formula t ion  of t he  Prob lem.  We consider a viscous-fluid film flow down a vertical plane under 
the action of a gravitational force. The coordinate system used is shown in Fig. 1. The rigid wall along which 
the film flows executes harmonic oscillations along the y-axis with a constant frequency w0 and acceleration 
amplitude A0. In the noninertial reference system attached to the wall, the system of Navier-Stokes equations 
for the film flow has the form 

Ou Ou Ou 1 0 p  f O2u 02u '~ 

o-i+u  +v = + Oy2j, (1.1) 
Ov Ov Ov l o p  ( 02v 02v ~ Ou Ov 
O---[ + u ~x + V Oy = --~ O-~ + Uk-~x2 + Oy2] + Aocos(coot + ~), ~-s 

Here u and v are the velocity components along the x- and y-axis, respectively, v is the kinematic viscosity, 
g is the free-fall acceleration, and p is the fluid density. 

For all fluid flow rates, system (1.1) admits of a solution with a flat free boundary. For this solution, 
the streamwise velocity and pressure profiles are 

U0 = 2-~- (2h0y - y 2 ) ,  Po = Pa + p(y - ho)Ao cos (coot + ~). (1.2) 

Here h0 is the thickness of the fluid film and Pa is the atmospheric pressure. 
However, already at the smallest flow rates the flow (1.2) can become wavy owing to its instability. 

Using the characteristic values of the quantities for the case of a wave-free film flow as nondimensionalizing 
scales, in particular, the thickness h0 and the free-surface velocity Us = gh~/(2u), we have the following 
dimensionless form of the equation of motion (the sign of nondimensionalization is omitted here): 

Ou Ou Ou 1 (  Op ) 1 (02u 02u'~ (1.3) 
o-7+u +v + oy2/' 

Ov Ov Ov 1 f Op Ao cos (wt ) 1 ( 02v 02v ~ Ou Ov 
0-7+u + N=gt,-N+T oy j' =~ 

The dynamic boundary conditions on the solid (y = 0) and free [y = h0 + h(x, t)] boundaries can be 
written in the following form adopted in [1]: 

u = v = 0, y = 0; (1.4) 

Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizik~, Vol. 40, No. 4, pp. 90-98, July- 
August, 1999. Original article submitted May 28, 1997; revision submitted October 16, 1997. 

630 0021-8944/99/4004-0630 $22.00 (~) 1999 Kluwer Academic/Plenum Publishers 



A 0 , 0.~ 0 
4 

Fig. 1 

1 
Here 

R 
(3" 

number, We = ~ is the Weber number, and a is the  surface-tension coefficient. 
, - ~ ' - u  

On the free boundary,  the  kinematic condit ion 

Oh Oh 
0---[+~ = v  

is valid. 

- U~ + Re ~ Ov + ~ - 2 ~ ~ = po ~ ,  (1.5) 

We Fr [ ( 0 ~  Or)Oh O_~yy] 
p -  -k-- + ~ + ~  ~ - 2  =po, u=  ho+~. 

02h (Oh'~ 2]-3/2 woho Re = Usho is the Reynolds number, Fr = ~ o  is the Froude 
Oz2 1 + \-b--~z ] J ' ~ = U, ' u 

(1.6) 

+ Uo~ + --4-y J 

with the boundary conditions 

Using (1.2), it can be easily shown that ,  for the  chosen scales of nondimensionalization, the relation 
Re/Fr = 2 is satisfied. Restr ict ing ourselves to the  consideration of long-wave disturbances, we seek the 
solution of system (1.3) under  conditions (1.4)-(1.6) in the form of certain series in the small parameter 

= ho/A (A is the characterist ic streamwise length of the disturbances). Following [1], we introduce the new 
variables x ~ - ~x, yl = y, and  rn = eat (n = 1, 2 , . . . )  and the functions u = Uo + eu ~, v = e2v~, p = Po + ep', 
and h = ~h ~. 

Neglecting the terms of the  order of 62 and higher and transferring boundary  conditions from the free 
surface to the undisturbed level, we have the following system of equations for u',  v ~, p~, and h t (the primes 
are omitted): 

e Op 1 02u 1 0 p  ~ 02v Ou Ov 
Fr Ox + Re Oy 2' Fr Oy + R-"~ Oy ----5 = 0, ~zz + ~y = 0 (1.7) 

u = - v = O ,  y=O,  

d2U~ h + Ou 02u 
dy2 ~y + ~ y 2  h = O, 

p + e ~ h + A--2~ h cos (.:t + ~) + 
02h 

We E 2 

g Ox 2 uy 
Fr Ov 

- - -  2 e R e  0"-y = 0, y = 1. 

(1.s) 

(1.9) 

The kinematic condition (1.6) takes the form 

Oh Oh Oh Oh Ov 
--t-~-~T2TUO~xT~U~x = v T e ~ y h ,  y =  1. (1.10) 

Orl 

In (1.9), only terms of the  highest order in ~ are retained, since, normally,  the values of We for thin 
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films of many fluids are rather  high. Therefore, we assume that  the relation Wee  2 -.~ 1 is valid. 
The solution of system (1.7) can be represented as a series in the paramete r  ~: 

oo 
(u, v,p, h) = E ~k( uk' vk'pk, hk+l). 

k=0 

Equating the coefficients at the  same powers of z, from the zero-order equat ions  we obtain 

y y2 c9hl Ao 
uo = ~hl ,  vo = 2 oOx Po = - ~ h l c o s ( w t  +gv) - W e e  2 02hl (1.11) 

' g O x  2 �9 

Substi tuting (1.11) into (1.10), we have the following equation, which describes the behavior of the 
disturbances in the first-order approximation:  

Ohl Ohl 
OT 1 + 2 T X  ---~ 0. (1.12) 

As follows from (1.12), in this first-order approximat ion all disturbances propagate  at a velocity equal 
to the doubled flow velocity at the  flat free boundary.  

For the next order in r f rom system (1.7) we have 

Ouo Ouo dUo _ 

1 0 p l  1 02vo 
Fr 0--y- + Re cgy - - T  - O, 

1 Opo 1 Ozul - - +  
Fr Ox Re Oy 2 '  

0U 1 60Vl 
�9 

For this order, from Eqs. (1.18) and 

d2U~ h2 OUl 
+Ty =~ 

(1.9) we obtain the  boundary conditions 

ul = Vl = 0, y = 0; 

Opo hi 0_2h2 2 F r  Cgvo 
Pl + ~ + We z2 0x z Re Oy 

(1.13) 

~ = 0 ,  y = l .  

(1.14) 

(1.15) 

The kinematic condition (1.10) for the  given order in ~ takes the form 

Cghl Oh2 c9h2 OOhl cOvo 
O---~ + ~-~rl + Uo T~z + r = vl + Ty  hl, y = l .  (1.16) 

The solution of system (1.13), which satisfies conditions (1.14) and (1.15), is easy to find. In particular, 
for the velocity ul  and for its value vl on the boundary,  we have 

= 2(0hl  Ao cos (wt + ~) + Wee  2 03hl~(y Ohl Re Oh1 Ul k Ox g -~x 3 ] - y2/2) - Re ~ (y - y3/3) - T z  (y/3 - y4/12), 

04hl~ ~ ~ ~0 02 h---~l 
_2(02hl  A0 cos( t + + + Re o lox + Re o x 2  v,(y = l) = 3 \ 0 x  2 g 

Substituting these relations into condition (1.16) with allowance for (1.12), after some simple calculations we 
obtain 

(1-~ "'~02hl 2 ~ OhlcgT2 + 4hl ~c9hl + Re + -~g2A~ cos (wlr2 + ~#)j ~ + We z 2 0r 4 = 0. (1.17) 

Here ~ = x - 2rl and wl = w/~ 2. Equat ion (1.17) is wr i t ten  in the reference sys tem moving with the velocity 
of linear disturbances that  propagate  over the film surface in the case of a s ta t ionary wall. 

Substi tuting 

r  b =  (5Wec2"~ 1/2 8 b R e H  5A0 
\ / 4  Re , Wl = f~b 4, hi = 1---~' r2 = rb 4, A = 4g Re 
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into Eq. (1.17), we obtain 

OH OH O2H 04H 
aT +4H--0~" + [1 + Acos(gtv + ~ o ) ] - ~ +  O~ 4 - 0 .  (1.18) 

For the case of a stationary wall (A = 0), Eq. (1.18) reduces to 

OH OH 02H 04H 
Or + 4H ~ + ~ + - - ~  = 0, (1.19) 

which, by convention but not perfectly right, is called the Kuramoto-Sivashinskii equation. The latter differ 
from (1.19) by its nonlinear term, but the solutions of the two equations can be easily expressed through each 
other, and, therefore, we will also call Eq. (1.19) the Kuramoto--Sivashinskii equation. As applied to the study 
of descending films, Eq. (1.19) was derived in [1]. Up to the present time, it has been studied rather carefully, 
and many solutions have been constructed. 

Similarly to the Kuramoto-Sivashinskii equation, the periodic or localized solutions of (1.18) retain 
their "momentum" 

A 
O /Hd~  O. 

Or 
0 

Here A is the wavelength, and, for the case of a localized disturbance, the integration limits from - ~  to +oc 
are assumed. 

Multiplying (1.18) by H and integrating the resulting equation, after some rearrangements, we obtain 
the following relation for the evolution of "energy," which is valid for any periodic (solitary) solution of (1.18): 

H 2 d~ = [I + A cos (~r + ~)] OH 2 Or - \ ' ~ 5 - ]  d~. (1.20) 
0 0 0 

2. Resul ts .  Equation (1.18) with the nonlinear term omitted describes the stability of the initial flow 
(1.2) against infinitesimal disturbances. These solutions are easy to find. Representing them as spatially- 
uniform waves g = F( r )exp  (ia~) + c.c., we obtain 

H = F0exp [ia~ + a2((1 - a2)'r Jr A/~sin  ( a t  + r + c.c. (2.1) 

Here a is the wavenumber, F0 is an arbitrary complex constant, and c.c. means a complex-conjugate 
expression. It follows from (2.1) that, in the case of both vibrating and stationary walls, the disturbances 
with wavenumbers smaller than unity are unstable. If the wavenumber is greater than unity, the disturbances 
decay with time. For the wavenumber an = 1, solution (2.1) remains finite as the time r increases. In the 
adopted reference system, it is a standing wave whose amplitude executes oscillations at the frequency ~t of 
wall vibrations. 

To analyze the nonlinear periodic solutions of Eq. (1.18), we solved this equation numerically. The 
solution was represented in the form of a spatial Fourier series with time-dependent harmonics: 

H(~,r)  = ~ Hn(r) exp(ina~). (2.2) 

By virtue of the reality of H, the relation H_~ = H i holds for the harmonics Hn. Here the asterisk means a 
complex-conjugate quantity. 

Substituting (2.2) into (1.18), we obtain an infinite system of nonlinear ordinary differential equations 
for Hn. Terminating series (2.2), i.e., assuming that all harmonics H,~ from a certain number N equal zero, 
we obtain the following finite analog of the system: 

N 

dHn -4inn y~ H,,~Hn_,~+a2n2{[l+Acos(flr+V)] a2n2}Hn, n = 0 , 1 , . . . , N .  (2.3) 
d r  rn= N - n  
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From (2.3) it follows that  the equation in the  harmonic  H0 is trivial and H0 equals an arbitrary constant.  In 
what  follows, we will construct solutions for which this constant equals zero. In other  words, we will consider 
the solutions for which the quantity H averaged over the  wavelength is equal to zero. Taking into account that  
Eq. (1.18) is invariant relative to the t ransform H ~ H + coast, ~ --+ ~ - 4cons t  r and r --+ r ,  we conclude 
that  all other solutions can be obtained from the solutions listed below by simple recalculation. 

Thus,  separating the real and imaginary parts  in (2.3) and taking into account that  H - n  - H*, we 
have a system of 2N ordinary differential equations in 2N unknown functions. 

System (2.3) was solved numerically by a fifth-order Runge--Kutta me thod  with an automat ic  choice 
of the integration step and a controlled accuracy. In terminat ing series (2.3), the  number  of harmonics was 
taken to satisfy the relation m a x  [Hn[/suplHn[ < 10 -4. For the results listed below, as the calculations show, 
N = 5-6 is sufficient. The  main results are obtained with N = 10. To verify some solutions obtained,  we 
also solved the system with N = 25. A direct comparison showed that ,  for the first three harmonics (for the 
considered wavenumbers a,  the contribution due to these harmonics was determining),  only the fourth to fifth 
decimal digit was different. 

At the present t ime, there are many  papers devoted to the Kuramoto-Sivashinskii  equation. The 
pa t te rn  of its solution is extremely rich. For instance, it was shown [1] tha t  for a = 1 a family of periodic 
solutions of Eq. (1.19) appears, which deviates f rom the trivial solution and can be extended to the wavenumber 
a .  = 0.4979. This family is traditionally called the  first family. In the same work [1], for this family a range 
of wavenumbers 0.77 ~< a ~< 0.84 was established throughout  which the  solutions are stable against all 
small perturbations.  Against small disturbances of the same period, the solutions of the first family with the 
wavenumbers 0.554 <~ a ~< 1 are stable. It was shown [2-4] that  there is a countable set of periodic families 
of the solutions. Two families were found [5], which for a ~ 0 t ransform into solitonlike solutions in the  form 
of a solitary peak and a solitary valley. Mult ipeak solitonlike solutions of Eq. (1.19) were constructed in [6], 
and it was shown [3, 4] that  such solutions are the  limiting ones for the  families branching off the families 
obtained in [5]. In the same study, it was shown tha t  a succession of bifurcations occurs, which gives rise to 
more intricate families. 

The available information on periodic s teady-state  solutions of the  Kuramoto-Sivashinskii  equations 
simplifies the study of the regimes given by Eq. (1.18). Taking into account  the complexity of the wave 
s t ructure  of the Kuramoto-Sivashinskii equation, in the  present work we restrict  ourselves to the construction 
of only those solutions of Eq. (1.18) whose wavenumbers fall into a close vicinity of the neutral wavenumber 
a = 1. In this case, the behavior of the solutions of the  Kuramoto-Sivashinskii  equation is most simple. If 
a > 1, all of them, irrespective of the initial waveform assumed, decay in t ime.  If, however, a < 1 and no 
subharmonics in the solution of system (2.3) were permi t ted  (i.e., the wavenumber  of the first harmonics 
was a,  and not a / r ,  where r is an integer number) ,  then all initial wave profiles tend to the corresponding 
solutions of the first family with time. 

As the calculations showed, even in tha t  wavenumber  region where the  s tructure of the solution of the 
Kuramoto-Sivashinskii  equation is quite simple, the effect of wall vibrations makes the solution pa t te rn  much 
more diversified. This pat tern  is largely influenced by both the ampl i tude  and frequency of the vibrations. 
The  effect of the initial phase for the wavenumber region considered is substantial ly less pronounced. In all 
examples listed below, it was put equal to qo = -a- /2 ,  i.e., the coefficient at the  second derivative in Eq. (1.18) 
had the form 1 + Asia  (flT). 

Curve 1 in Fig. 2 shows the dependence of the absolute value of the ampl i tude  H1 of the first harmonic 
on t ime for the wavenumber a = 0.95, A = 1, and fl = 1 (in what  follows, the ampli tude of a harmonic is 
understood as its modulus).  The  initial value of the  real part of H1 is 0.5. Here, as well as in Figs. 3-6, the 
initial values of all other harmonics and the imaginary part of the first harmonic  H1 are assumed to equal 
zero. For comparison, curve 2 shows the corresponding solution of the Kurarnoto-Sivashinskii  equation. Up 
to the moment  7" = 20, it approaches a constant,  which coincides with the  value obtained, for example, in 
[3-5] for the steady-state wave regime. It is seen tha t  the solution of Eq. (1.18) rapidly reaches a certain 
steady level and executes regular oscillations around the  steady-state solution of the Kuramoto-Sivashinskii  
equation. Figure 3 shows the profiles of this solution for three different t imes within a t ime interval equal 
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to the period of wall vibration for a = 0.95, A = 1, and fl = 1. Three spatial periods are shown. For each 
of these moments, the wave is seen to be a perfect sinusoid. As shown in Fig. 2, for this calculation variant 
the wave amplitude is t ime-modulated by a nearly perfect sine curve. The latter is due to the fact that, for 
the solutions with the wavenumbers around the neutral number a ,  -- 1, the  amplitudes of higher harmonics 
rapidly decrease. The orders" of these amplitudes can be inferred, for example,  from Fig. 4. Here curves 1, 2, 
and 3 show the time dependence of the amplitudes of the first (HI), second (//2), and third (//3) harmonics, 
respectively. The wave number  is a -- 0.95, and the amplitude and the frequency of wall vibrations are A = 0.3 
and ~ = 0.1, respectively. 

For a fixed value of frequency w, the oscillations of the solution become greater and more different 
from the sinusoid as the ampli tude A increases. Figure 5 shows the t ime deper/dence of the amplitude of the 
first harmonic HI. For all curves, a = 0.95. Curve 1 corresponds to A = 0 (the solution of the Kuramoto-- 
Sivashinskii equation), curve 2 to A = 0.1 and ~ = 0.1, and curve 3 to A -- 0.3 and ~ /=  0.1. 

For a given ampl i tude  A, the solution transforms in a similar manner  with increasing frequency ~2. 
Provided that, at a given amplitude A, the wavenumber a is close to" the neutral wavenumber but 

smaller than it (a < 1 is the  linear instability region), solutions with an interesting behavior are observed for 
sufficiently small frequencies of wall vibrations fl (for curve 4 in Fig. 5, A -- 2 and ~ = 0.1). It is seen that 
there are rather long t ime intervals in which the solution practically equals zero; then it rapidly increases, 
with the amplitude of the fundamental  harmonic reaching a maximum (other harmonics also increase rapidly, 
but in proper proportions). Afterwards, the solution rapidly decreases and again becomes equal to zero for 
a long period of time. Except  for the first segment (interval r = 0-40 for curve 4), where the behavior of 
the solution depends on the  initial data, this process is repeated over and over. As a result, we have an 
interesting auto-oscillatory regime whose characteristics (the "peaceful" periods and the amplitude peaks) are 
independent of the initial da ta  and depend only on the frequency fl and ampli tude A of wall vibrations. 
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This behavior of the solution can be explained, however not quite rigorously, as follows. If the frequency 
f~ is sufficiently small, the phase of the coefficient at the second derivative in Eq. (1.18) can be considered 
practically constant, i.e., being "frozen" during a fairly long period of time. For this time period, the local 
linear instability region falls in the interval of wavenumbers 

0 < a < [1 + Acos (aT + ~)],/2. (2.4) 

Thus, the upper boundary of the indicated local instability region "breathes" in time. If the wavenumber 
a lies near an, but a < an,  and the amplitude A is sufficiently large, then at those moments when a falls into 
region (2.4) and the amplitudes of other harmonics are very small, a linear exponential growth of the wave is 
observed at first (at this stage, the value of the cosine keeps growing), and at the  nonlinear stage even a more 
rapid growth of the wave occurs. Afterwards, when the upper limit in (2.4) starts decreasing, the solution 
decreases as rapidly as i t previously grew. When the wavenumber a falls in the stability region, the stage 
of linear exponential decrease is observed. Subsequently, the process is repeated over and over again. The 
above considerations are confirmed by calculation results on modeling the evolution of periodic disturbances 
with the wavenumbers within the stability region. This calculation is exemplified by Fig. 6, which shows the 
time evolution of the first-harmonic amplitude for the solution with the wavenumber a = 1.005 (A = 1 and 
f / =  0.1). It is seen from Fig. 6 that ,  although the solution, as a whole, lies within the stability region, for a 
certain time interval it falls into the local instability region. This, as in the first case, results in the outbursts 
of the amplitudes. Nevertheless, the peak values of these outbursts decrease with time, and, as a result, the 
solution decays. The reason for this difference in the two regimes close to am but  lying on its opposite sides is 
that in the first case (a < an) the solution remains in the local instability region for a longer period of time 
than in the local stability region, and in the second case (a > a , )  quite the opposite situation is observed. 
A numerical analysis of Eq. (1.20) for the "energy" balance shows that,  when a > an, the losses of "energy" 
are not compensated by its pumping.  

Conclus ions .  Equation (1.18) obtained in this work allows one to s tudy the behavior of disturbances 
in a film flow on a vibrating vertical plane for small flow rates of the fluid. The wave regimes of the flow are 
largely influenced by both the amplitude and frequency of wall vibrations. As the calculations show, even 
when the wavenumbers of the disturbances are close to the neutral wavenumber an, interesting wave regimes 
can occur on the film surface, which are not observed in the case of a film flowing down a stationary plane. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant No. 95-01- 
00879) and by Project No. 274 in the research direction "Fundamental Research in the Field of Physics and 
High Technologies" of the Federal Special-Purpose Program "Governmental Support  of Integration between 
Higher Education and Fundamental  Science for the Years 1997-2000." 
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